
Department of CSE                                                                                                              Page 1 of 44 
 

  

 

                                                                                 

 

                                                                                    UNIT-3 

                                 Exception 

Handling 
 

 

The exception handling in java is one of the powerful mechanism  to  handle  

the  runtime errors so that normal flow of the application can be maintained. 

 

What is exception 

 
In java, exception is an event that disrupts the normal flow of the program. It is 

an object which is thrown at runtime. 

 

Exception Handling Fundamentals : 

Java exception handling is managed via five keywords: try, catch, throw, throws, 

and finally. They form an interrelated subsystem in which the use of one implies the use of 

another. Throughout the course of this chapter, each keyword is examined in detail. However, 

it is useful at the outset to have a general understanding of the role each plays in exception 

handling. Briefly, here is how they work. 

Program statements that you want to monitor for exceptions are contained within a try block. 

If an exception occurs within the try block, it is thrown. Your code can catch this exception 

using catch and handle it in some rational manner. System-generated exceptions are 

automatically thrown by the Java run-time system. 

 

 

Advantage of Exception Handling 

 
The core advantage of exception handling is to maintain the normal flow of 

the application. Exception normally disrupts the normal flow of the application 

that is why we use exception handling. 

 

 

 

 



Department of CSE                                                                                                              Page 2 of 44 
 

 

 

 

 

 

Types of Exception 

 
There are mainly two types of exceptions: checked and unchecked where error is 

considered as unchecked exception. The sun microsystem says there are three types of 

exceptions: 

1. Checked Exception 

2. Unchecked Exception 

3. Error 

 

Difference between checked and 

unchecked exceptions : 

 
1) Checked Exception: The classes that extend Throwable class except 

RuntimeException and Error are known as checked exceptions e.g.IOException, 

SQLException etc. Checked exceptions are checked at compile-time. 

2) Unchecked Exception: The classes that extend RuntimeException are known 

as unchecked exceptions e.g. ArithmeticException, NullPointerException, 

ArrayIndexOutOfBoundsException etc. Unchecked exceptions are not checked at 

compile-time rather they are checked at runtime. 

3) Error: Error is irrecoverable e.g. OutOfMemoryError, VirtualMachineError, 

AssertionError etc. 

 

Termination Model : 

In the termination model, when a method encounters an exception, further processing in that 

method is terminated and control is transferred to the nearest catch block that can handle the 

type of exception encountered. 

In other words we can say that in termination model the error is so critical there is no way to 

get back to where the exception occurred. 

Resumptive Model : 



Department of CSE                                                                                                              Page 3 of 44 
 

The alternative of termination model is resumptive model. In resumptive model, the 

exception handler is expected to do something to stable the situation, and then the faulting 

method is retried. In resumptive model we hope to continue the execution after the exception 

is handled. 

In resumptive model we may use a method call that want resumption like behavior. We may 

also place the try block in a while loop that keeps re-entering the try block util the result is 

satisfactory. 

 

Uncaught Exceptions in Java : 
 

In java, assume that, if we do not handle the exceptions in a program. In this case, when an 

exception occurs in a particular function, then Java prints a exception message with the help 

of uncaught exception handler. 

The uncaught exceptions are the exceptions that are not caught by the compiler but 

automatically caught and handled by the Java built-in exception handler. 

Java programming language has a very strong exception handling mechanism. It allow us to 

handle the exception use the keywords like try, catch, finally, throw, and throws. 

 

 

When an uncaught exception occurs, the JVM calls a special private method 

known dispatchUncaughtException( ), on the Thread class in which the exception occurs and 

terminates the thread. 

The Division by zero exception is one of the example for uncaught exceptions. Look at the 

following code. 

 

 

 

Example: 

import java.util.Scanner; 

 

public class UncaughtExceptionExample { 

         

    public static void main(String[] args) { 

                 

        Scanner read = new Scanner(System.in); 

        System.out.println("Enter the a and b values: "); 

        int a = read.nextInt(); 

        int b = read.nextInt(); 

        int c = a / b; 



Department of CSE                                                                                                              Page 4 of 44 
 

        System.out.println(a + "/" + b +" = " + c); 

         

    } 

} 

     

In the above example code, we are not used try and catch blocks, but when the value of b is 

zero the division by zero exception occurs and it caught by the default exception handler. 

 

Java Catch Multiple Exceptions 

Java Multi-catch block 

A try block can be followed by one or more catch blocks. Each catch block must contain a 

different exception handler. So, if you have to perform different tasks at the occurrence of 

different exceptions, use java multi-catch block. 

Points to remember 

o At a time only one exception occurs and at a time only one catch block is executed. 

o All catch blocks must be ordered from most specific to most general, i.e. catch for 

ArithmeticException must come before catch for Exception. 

 

 

 

 

Flowchart of Multi-catch Block : 

 



Department of CSE                                                                                                              Page 5 of 44 
 

 
            Example 1 

Let's see a simple example of java multi-catch block. 

MultipleCatchBlock1.java:  

public class MultipleCatchBlock1 {   

   

    public static void main(String[] args) {   

          

         try{     

                int a[]=new int[5];     

                a[5]=30/0;     

             }     

               catch(ArithmeticException e)   

                  {   

                   System.out.println("Arithmetic Exception occurs");   

                  }     

               catch(ArrayIndexOutOfBoundsException e)   

                  {   

                   System.out.println("ArrayIndexOutOfBounds Exception occurs");   

                 }     

               catch(Exception e)   

                  {   

                   System.out.println("Parent Exception occurs");   

                  }              



Department of CSE                                                                                                              Page 6 of 44 
 

               System.out.println("rest of the code");     

    }   

}   

 

 

Java Nested try block : 

In Java, using a try block inside another try block is permitted. It is called as nested try block. 

Every statement that we enter a statement in try block, context of that exception is pushed 

onto the stack. 

For example, the inner try block can be used to 

handle ArrayIndexOutOfBoundsException while the outer try block can handle 

the ArithemeticException (division by zero). 

Why use nested try block : 

Sometimes a situation may arise where a part of a block may cause one error and the entire 

block itself may cause another error. In such cases, exception handlers have to be nested. 

Syntax: 

....     

//main try block   

try     

{     

    statement 1;     

    statement 2;     

//try catch block within another try block   

    try     

    {     

        statement 3;     

        statement 4;     

//try catch block within nested try block   

        try     

        {     

            statement 5;     

           statement 6;     

     }     

        catch(Exception e2)     

        {     

//exception message   

        }     

   

    }     

    catch(Exception e1)     



Department of CSE                                                                                                              Page 7 of 44 
 

    {     

//exception message   

    }     

}     

//catch block of parent (outer) try block   

catch(Exception e3)     

{     

//exception message   

}     

....    

Java Nested try Example 

Example 1 

Let's see an example where we place a try block within another try block for two different 

exceptions. 

public class NestedTryBlock{     

 public static void main(String args[]){    

 //outer try block    

  try{     

  //inner try block 1   

    try{     

     System.out.println("going to divide by 0");     

     int b =39/0;     

   }   

    //catch block of inner try block 1   

    catch(ArithmeticException e)   

    {   

      System.out.println(e);   

    }     

        

     

    //inner try block 2   

    try{     

    int a[]=new int[5];     

   

    //assigning the value out of array bounds   

     a[5]=4;     

     }   

   

    //catch block of inner try block 2   

    catch(ArrayIndexOutOfBoundsException e)   

    {   

       System.out.println(e);   

    }     



Department of CSE                                                                                                              Page 8 of 44 
 

   

       

    System.out.println("other statement");     

  }   

  //catch block of outer try block   

  catch(Exception e)   

  {   

    System.out.println("handled the exception (outer catch)");   

  }     

     

  System.out.println("normal flow..");     

 }     

}   

Output: 

 

When any try block does not have a catch block for a particular exception, then the catch 

block of the outer (parent) try block are checked for that exception, and if it matches, the 

catch block of outer try block is executed. 

If none of the catch block specified in the code is unable to handle the exception, then the 

Java runtime system will handle the exception. Then it displays the system generated 

message for that exception. 

Example 2 

Let's consider the following example. Here the try block within nested try block (inner try 

block 2) do not handle the exception. The control is then transferred to its parent try block 

(inner try block 1). If it does not handle the exception, then the control is transferred to the 

main try block (outer try block) where the appropriate catch block handles the exception. It is 

termed as nesting. 

NestedTryBlock.java 

public class NestedTryBlock2 {   

      

    public static void main(String args[])   

    {   



Department of CSE                                                                                                              Page 9 of 44 
 

        // outer (main) try block   

        try {   

     

            //inner try block 1    

            try {   

     

                // inner try block 2   

                try {   

                    int arr[] = { 1, 2, 3, 4 };   

   

                    //printing the array element out of its bounds   

                    System.out.println(arr[10]);   

                }   

     

                // to handles ArithmeticException   

                catch (ArithmeticException e) {   

                    System.out.println("Arithmetic exception");   

                    System.out.println(" inner try block 2");   

                }   

            }   

     

            // to handle ArithmeticException    

            catch (ArithmeticException e) {   

                System.out.println("Arithmetic exception");   

                System.out.println("inner try block 1");   

            }   

        }   

     

        // to handle ArrayIndexOutOfBoundsException    

        catch (ArrayIndexOutOfBoundsException e4) {   

            System.out.print(e4);   

            System.out.println(" outer (main) try block");   

        }   

        catch (Exception e5) {   

            System.out.print("Exception");   

            System.out.println(" handled in main try-block");   

        }   

    }   

}   

Output: 



Department of CSE                                                                                                              Page 10 of 44 
 

 
 

Java finally block 

Java finally block is a block used to execute important code such as closing the connection, 

etc. 

Java finally block is always executed whether an exception is handled or not. Therefore, it 

contains all the necessary statements that need to be printed regardless of the exception 

occurs or not. 

The finally block follows the try-catch block. 

Flowchart of finally block 

 
Note: If you don't handle the exception, before terminating the program, JVM 

executes finally block (if any). 

Why use Java finally block? 

o finally block in Java can be used to put "cleanup" code such as closing a file, closing 

connection, etc. 



Department of CSE                                                                                                              Page 11 of 44 
 

o The important statements to be printed can be placed in the finally block. 

Usage of Java finally 

Let's see the different cases where Java finally block can be used. 

Case 1: When an exception does not occur 

Let's see the below example where the Java program does not throw any exception, and the 

finally block is executed after the try block. 

TestFinallyBlock.java 

class TestFinallyBlock {     

  public static void main(String args[]){     

  try{     

//below code do not throw any exception   

   int data=25/5;     

   System.out.println(data);     

  }     

//catch won't be executed   

  catch(NullPointerException e){   

System.out.println(e);   

}     

//executed regardless of exception occurred or not   

 finally {   

System.out.println("finally block is always executed");   

}     

     

System.out.println("rest of phe code...");     

  }     

}     

Output: 

 
Case 2: When an exception occurr but not handled by the catch block 

Let's see the the fillowing example. Here, the code throws an exception however the catch 

block cannot handle it. Despite this, the finally block is executed after the try block and then 

the program terminates abnormally. 



Department of CSE                                                                                                              Page 12 of 44 
 

TestFinallyBlock1.java 

public class TestFinallyBlock1{     

      public static void main(String args[]){    

   

      try {     

   

        System.out.println("Inside the try block");   

           

        //below code throws divide by zero exception   

       int data=25/0;     

       System.out.println(data);     

      }     

      //cannot handle Arithmetic type exception   

      //can only accept Null Pointer type exception   

      catch(NullPointerException e){   

        System.out.println(e);   

      }    

   

      //executes regardless of exception occured or not    

      finally {   

        System.out.println("finally block is always executed");   

      }     

   

      System.out.println("rest of the code...");     

      }     

1.     }     

Output: 

 
Case 3: When an exception occurs and is handled by the catch block 

Example: 

Let's see the following example where the Java code throws an exception and the catch block 

handles the exception. Later the finally block is executed after the try-catch block. Further, 

the rest of the code is also executed normally. 

TestFinallyBlock2.java 



Department of CSE                                                                                                              Page 13 of 44 
 

public class TestFinallyBlock2{     

      public static void main(String args[]){    

   

      try {     

   

        System.out.println("Inside try block");   

   

        //below code throws divide by zero exception   

       int data=25/0;     

       System.out.println(data);     

      }    

   

      //handles the Arithmetic Exception / Divide by zero exception   

      catch(ArithmeticException e){   

        System.out.println("Exception handled");   

        System.out.println(e);   

      }    

   

      //executes regardless of exception occured or not    

      finally {   

        System.out.println("finally block is always executed");   

      }     

   

      System.out.println("rest of the code...");     

      }     

    }   

Output: 

 
 

 

 

Built-in Exceptions in Java with examples 

 
Built-in exceptions are the exceptions which are available in Java libraries. These exceptions 

are suitable to explain certain error situations. Below is the list of important built-in 

exceptions in Java. 

Examples of Built-in Exception: 



Department of CSE                                                                                                              Page 14 of 44 
 

 

1. Arithmetic exception : It is thrown when an exceptional condition has occurred in an 

arithmetic operation. 

// Java program to demonstrate  

// ArithmeticException 

class ArithmeticException_Demo { 

public static void main(String args[]) 

    { 

        try { 

            int a = 30, b = 0; 

            int c = a / b; // cannot divide by zero 

            System.out.println("Result = " + c); 

        } 

        catch (ArithmeticException e) { 

            System.out.println("Can't divide a number by 0"); 

        } 

    } 

} 

Output: 

Can't divide a number by 0 

 

ArrayIndexOutOfBounds Exception : It is thrown to indicate that an array has been 

accessed with an illegal index. The index is either negative or greater than or equal to the 

size of the array. 

// Java program to demonstrate  



Department of CSE                                                                                                              Page 15 of 44 
 

// ArrayIndexOutOfBoundException 

class ArrayIndexOutOfBound_Demo { 

public static void main(String args[]) 

    { 

        try { 

            int a[] = new int[5]; 

            a[6] = 9; // accessing 7th element in an array of 

            // size 5 

        } 

        catch (ArrayIndexOutOfBoundsException e) { 

            System.out.println("Array Index is Out Of Bounds"); 

        } 

    } 

} 

Output: 

Array Index is Out Of Bounds 

 

ClassNotFoundException : This Exception is raised when we try to access a class whose 

definition is not found. 

// Java program to illustrate the  

// concept of ClassNotFoundException 

class Bishal { 

   

} class Geeks { 



Department of CSE                                                                                                              Page 16 of 44 
 

   

} class MyClass { 

public static void main(String[] args) 

    { 

        Object o = class.forName(args[0]).newInstance(); 

        System.out.println("Class created for" + 

o.getClass().getName()); 

    } 

} 

Output: 

ClassNotFoundException 

 

FileNotFoundException : This Exception is raised when a file is not accessible or does 

not open. 

// Java program to demonstrate  

// FileNotFoundException 

import java.io.File; 

import java.io.FileNotFoundException; 

import java.io.FileReader; 

class File_notFound_Demo { 

   

public static void main(String args[]) 

    { 

        try { 



Department of CSE                                                                                                              Page 17 of 44 
 

   

            // Following file does not exist 

            File file = new File("E:// file.txt"); 

   

            FileReader fr = new FileReader(file); 

        } 

        catch (FileNotFoundException e) { 

            System.out.println("File does not exist"); 

        } 

    } 

} 

Output: 

File does not exist 

 

IOException : It is thrown when an input-output operation failed or interrupted 

// Java program to illustrate IOException 

import java.io.*; 

class Geeks { 

public static void main(String args[]) 

    { 

        FileInputStream f = null; 

        f = new FileInputStream("abc.txt"); 

        int i; 

file:///E:/


Department of CSE                                                                                                              Page 18 of 44 
 

        while ((i = f.read()) != -1) { 

            System.out.print((char)i); 

        } 

        f.close(); 

    } 

} 

Output: 

error: unreported exception IOException; must be caught or declared to be thrown 

 

InterruptedException : It is thrown when a thread is waiting, sleeping, or doing some 

processing, and it is interrupted. 

// Java Program to illustrate  

// InterruptedException 

class Geeks { 

public static void main(String args[]) 

    { 

        Thread t = new Thread(); 

        t.sleep(10000); 

    } 

} 

Output: 

error: unreported exception InterruptedException; must be caught or declared to be thrown 

 

NoSuchMethodException : t is thrown when accessing a method which is not found. 



Department of CSE                                                                                                              Page 19 of 44 
 

// Java Program to illustrate  

// NoSuchMethodException 

class Geeks { 

public Geeks() 

    { 

        Class i; 

        try { 

            i = Class.forName("java.lang.String"); 

            try { 

                Class[] p = new Class[5]; 

            } 

            catch (SecurityException e) { 

                e.printStackTrace(); 

            } 

            catch (NoSuchMethodException e) { 

                e.printStackTrace(); 

            } 

        } 

        catch (ClassNotFoundException e) { 

            e.printStackTrace(); 

        } 

    } 



Department of CSE                                                                                                              Page 20 of 44 
 

   

public static void main(String[] args) 

    { 

        new Geeks(); 

    } 

} 

Output: 

error: exception NoSuchMethodException is never thrown  

in body of corresponding try statement 

 

NullPointerException : This exception is raised when referring to the members of a null 

object. Null represents nothing 

// Java program to demonstrate NullPointerException 

class NullPointer_Demo { 

public static void main(String args[]) 

    { 

        try { 

            String a = null; // null value 

            System.out.println(a.charAt(0)); 

        } 

        catch (NullPointerException e) { 

            System.out.println("NullPointerException.."); 

        } 

    } 



Department of CSE                                                                                                              Page 21 of 44 
 

} 

Output: 

NullPointerException.. 

 

NumberFormatException : This exception is raised when a method could not convert a 

string into a numeric format. 

// Java program to demonstrate  

// NumberFormatException 

class NumberFormat_Demo { 

public static void main(String args[]) 

    { 

        try { 

            // "akki" is not a number 

            int num = Integer.parseInt("akki"); 

   

            System.out.println(num); 

        } 

        catch (NumberFormatException e) { 

            System.out.println("Number format exception"); 

        } 

    } 

} 

Output: 

Number format exception 

 



Department of CSE                                                                                                              Page 22 of 44 
 

StringIndexOutOfBoundsException : It is thrown by String class methods to indicate 

that an index is either negative than the size of the string. 

// Java program to demonstrate  

// StringIndexOutOfBoundsException 

class StringIndexOutOfBound_Demo { 

public static void main(String args[]) 

    { 

        try { 

            String a = "This is like chipping "; // length is 22 

            char c = a.charAt(24); // accessing 25th element 

            System.out.println(c); 

        } 

        catch (StringIndexOutOfBoundsException e) { 

            System.out.println("StringIndexOutOfBoundsException"); 

        } 

    } 

} 

Output: 

StringIndexOutOfBoundsException 

 

 

 

Creating Own Exceptions in Java : 
 

The Java programming language allow us to create our own exception classes which are 

basically subclasses built-in class Exception. 

To create our own exception class simply create a class as a subclass of built-in Exception 

class. 



Department of CSE                                                                                                              Page 23 of 44 
 

We may create constructor in the user-defined exception class and pass a string to Exception 

class constructor using super(). We can use getMessage() method to access the string. 

Let's look at the following Java code that illustrates the creation of user-defined exception. 

Example 

import java.util.Scanner; 

 

class NotEligibleException extends Exception{ 

    NotEligibleException(String msg){ 

        super(msg); 

    } 

} 

         

class VoterList{             

    int age;             

    VoterList(int age){ 

        this.age = age; 

    } 

             

    void checkEligibility() { 

        try { 

            if(age < 18) { 

                throw new NotEligibleException("Error: Not eligible for vote due to under age."); 

            } 

            System.out.println("Congrates! You are eligible for vote."); 

        } 

        catch(NotEligibleException nee) { 

            System.out.println(nee.getMessage()); 

        } 

    } 

    public static void main(String args[]) { 

         

        Scanner input = new Scanner(System.in); 

        System.out.println("Enter your age in years: "); 

        int age = input.nextInt(); 

        VoterList person = new VoterList(age); 



Department of CSE                                                                                                              Page 24 of 44 
 

        person.checkEligibility(); 

    } 

} 

 

 

When we run this code, it produce the following output. 

 
 

 

 MULTI THREADING  

Process-Based and Thread-Based Multitasking 
 

A multitasking operating system is an operating system that gives you the perception of 2 

or more tasks/jobs/processes running simultaneously. It does this by dividing system 

resources amongst these tasks/jobs/processes and switching between the tasks/jobs/processes 

while they are executing over and over again. Usually, the CPU processes only one task at a 

time, but the switching is so fast that it looks like the CPU is executing multiple processes 

simultaneously. They can support either preemptive multitasking, where the OS doles out 

time to applications (virtually all modern OSes), or cooperative multitasking, where the OS 

waits for the program to give back control (Windows 3.x, Mac OS 9 and earlier), leading to 

hangs and crashes. Also known as Timesharing, multitasking is a logical extension of 

multiprogramming.  

 

Multitasking Programming is of Two Types:  

1. Process-based Multitasking 



Department of CSE                                                                                                              Page 25 of 44 
 

2. Thread-based Multitasking 

S. 

No. 
Process-Based Multitasking Thread-Based Multitasking 

1. 

In process-based multitasking, 

two or more processes and 

programs can be run 

concurrently. 

In thread-based multitasking, two or more threads can 

be run concurrently. 

2. 

In process-based multitasking, 

a process or a program is the 

smallest unit. 

In thread-based multitasking, a thread is the smallest 

unit. 

3. The program is a bigger unit. Thread is a smaller unit. 

4. 

Process-based multitasking 

requires more overhead. Thread-based multitasking requires less overhead. 

5. 

The process requires its own 

address space. Threads share the same address space. 

6. 

The process to Process 

communication is expensive. Thread to Thread communication is not expensive. 

7. 

Here, it is unable to gain 

access over the idle time of 

the CPU. 

It allows taking gain access over idle time taken by 

the CPU. 

8. 

It is a comparatively 

heavyweight. It is comparatively lightweight. 

9. 

It has a faster data rate multi-

tasking. It has a faster data rate multi-tasking. 

10. 

Example: We can listen to 

music and browse the internet 

at the same time. The 

processes in this example are 

the music player and browser.  

Example: Using a browser we can navigate through 

the webpage and at the same time download a file. In 

this example, navigation is one thread, and 

downloading is another thread. Also in a word-

processing application like MS Word, we can type 

text in one thread, and spell checker checks for 

mistakes in another thread.  

 

 

 

 



Department of CSE                                                                                                              Page 26 of 44 
 

Java Thread Model : 
 

java programming language allows us to create a program that contains one or more parts that 

can run simultaneously at the same time. This type of program is known as a multithreading 

program. Each part of this program is called a thread. Every thread defines a separate path of 

execution in java. A thread is explained in different ways, and a few of them are as specified 

below. 

A thread is a light wieght process. 

A thread may also be defined as follows. 

A thread is a subpart of a process that can run individually. 

In java, a thread goes through different states throughout its execution. These stages are 

called thread life cycle states or phases. A thread may in any of the states like new, ready or 

runnable, running, blocked or wait, and dead or terminated state. The life cycle of a thread in 

java is shown in the following figure. 

 

 

Let's look at each phase indetailed. 

New 

When a thread object is created using new, then the thread is said to be in the New state. This 

state is also known as Born state. 

Example 

Thread t1 = new Thread(); 



Department of CSE                                                                                                              Page 27 of 44 
 

 

 

Runnable / Ready 

When a thread calls start( ) method, then the thread is said to be in the Runnable state. This 

state is also known as a Ready state. 

Example 

t1.start( ); 

 

 

Running 

When a thread calls run( ) method, then the thread is said to be Running. The run( ) method 

of a thread called automatically by the start( ) method. 

Blocked / Waiting 

A thread in the Running state may move into the blocked state due to various reasons like 

sleep( ) method called, wait( ) method called, suspend( ) method called, and join( ) method 

called, etc. 

When a thread is in the blocked or waiting state, it may move to Runnable state due to 

reasons like sleep time completed, waiting time completed, notify( ) or notifyAll( ) method 

called, resume( ) method called, etc. 

Example 

Thread.sleep(1000); 

wait(1000); 

wait(); 

suspened(); 

notify(); 

notifyAll(); 

resume(); 

 

 

 

Dead / Terminated 

A thread in the Running state may move into the dead state due to either its execution 

completed or the stop( ) method called. The dead state is also known as the terminated state. 

 



Department of CSE                                                                                                              Page 28 of 44 
 

 

Java Program to Create a Thread : 

 

 
Thread can be referred to as a lightweight process. Thread uses fewer resources to create 

and exist in the process; thread shares process resources. The main thread of Java is the 

thread that is started when the program starts. The slave thread is created as a result of the 

main thread. This is the last thread to complete execution. 

 A thread can programmatically be created by: 

1. Implementing the java.lang.Runnable interface. 

2. Extending the java.lang.Thread class. 

You can create threads by implementing the runnable interface and overriding the run() 

method. Then, you can create a thread object and call the start() method. 

 

 

Thread Class: 

The Thread class provides constructors and methods for creating and operating on threads. 

The thread extends the Object and implements the Runnable interface. 

// start a newly created thread. 

// Thread moves from new state to runnable state 

// When it gets a chance, executes the target run() method 

public void start()   

Runnable interface: 
Any class with instances that are intended to be executed by a thread should implement the 

Runnable interface. The Runnable interface has only one method, which is called run(). 

// Thread action is performed 

public void run()  

Benefits of creating threads : 

 When compared to processes, Java Threads are more lightweight; it takes less time and 

resources to create a thread. 

 Threads share the data and code of their parent process. 

 Thread communication is simpler than process communication. 

 Context switching between threads is usually cheaper than switching between processes.  

Calling run() instead of start() 

The common mistake is starting a thread using run() instead of start() method.  

  Thread myThread = new Thread(MyRunnable()); 

  myThread.run();  //should be start(); 

The run() method is not called by the thread you created. Instead, it is called by the thread 

that created the myThread.  

 

Example 1: By using Thread Class 

 Java 

https://www.geeksforgeeks.org/runnable-interface-in-java/
https://www.geeksforgeeks.org/java-lang-thread-class-java/


Department of CSE                                                                                                              Page 29 of 44 
 

import java.io.*; 

class GFG extends Thread { 

    public void run() 

    { 

        System.out.print("Welcome to GeeksforGeeks."); 

    } 

    public static void main(String[] args) 

    { 

        GFG g = new GFG(); // creating thread 

        g.start(); // starting thread 

    } 

} 

Output 

Welcome to GeeksforGeeks. 

 

Example 2: By implementing Runnable interface 

 Java 

import java.io.*; 

class GFG implements Runnable { 

    public static void main(String args[]) 

    { 

        // create an object of Runnable target 

        GFG gfg = new GFG(); 



Department of CSE                                                                                                              Page 30 of 44 
 

   

        // pass the runnable reference to Thread 

        Thread t = new Thread(gfg, "gfg"); 

   

        // start the thread 

        t.start(); 

   

        // get the name of the thread 

        System.out.println(t.getName()); 

    } 

    @Override public void run() 

    { 

        System.out.println("Inside run method"); 

    } 

} 

Output 

gfg 

Inside run method 

 

 

 

Priority of a Thread (Thread Priority) 

Each thread has a priority. Priorities are represented by a number between 1 and 10. In most 

cases, the thread scheduler schedules the threads according to their priority (known as 

preemptive scheduling). But it is not guaranteed because it depends on JVM specification that 

which scheduling it chooses. Note that not only JVM a Java programmer can also assign the 

priorities of a thread explicitly in a Java program. 



Department of CSE                                                                                                              Page 31 of 44 
 

Setter & Getter Method of Thread Priority 

Let's discuss the setter and getter method of the thread priority. 

public final int getPriority(): The java.lang.Thread.getPriority() method returns the priority 

of the given thread. 

public final void setPriority(int newPriority): The java.lang.Thread.setPriority() method 

updates or assign the priority of the thread to newPriority. The method throws 

IllegalArgumentException if the value newPriority goes out of the range, which is 1 

(minimum) to 10 (maximum). 

38M 

730 

HTML Tutorial 

3 constants defined in Thread class: 

1. public static int MIN_PRIORITY 

2. public static int NORM_PRIORITY 

3. public static int MAX_PRIORITY 

Default priority of a thread is 5 (NORM_PRIORITY). The value of MIN_PRIORITY is 1 

and the value of MAX_PRIORITY is 10. 

Example of priority of a Thread: 

FileName: ThreadPriorityExample.java 

// Importing the required classes   

import java.lang.*;   

   

public class ThreadPriorityExample extends Thread    

{   

   

// Method 1   

// Whenever the start() method is called by a thread   

// the run() method is invoked   

public void run()   

{   

// the print statement   

System.out.println("Inside the run() method");   

}   

   

// the main method   

public static void main(String argvs[])   

{   

// Creating threads with the help of ThreadPriorityExample class   



Department of CSE                                                                                                              Page 32 of 44 
 

ThreadPriorityExample th1 = new ThreadPriorityExample();   

ThreadPriorityExample th2 = new ThreadPriorityExample();   

ThreadPriorityExample th3 = new ThreadPriorityExample();   

   

// We did not mention the priority of the thread.   

// Therefore, the priorities of the thread is 5, the default value   

   

// 1st Thread   

// Displaying the priority of the thread   

// using the getPriority() method   

System.out.println("Priority of the thread th1 is : " + th1.getPriority());   

   

// 2nd Thread    

// Display the priority of the thread   

System.out.println("Priority of the thread th2 is : " + th2.getPriority());   

   

// 3rd Thread    

// // Display the priority of the thread   

System.out.println("Priority of the thread th2 is : " + th2.getPriority());   

   

// Setting priorities of above threads by   

// passing integer arguments   

th1.setPriority(6);   

th2.setPriority(3);   

th3.setPriority(9);   

   

// 6   

System.out.println("Priority of the thread th1 is : " + th1.getPriority());   

   

// 3   

System.out.println("Priority of the thread th2 is : " + th2.getPriority());   

   

// 9   

System.out.println("Priority of the thread th3 is : " + th3.getPriority());   

   

// Main thread   

   

// Displaying name of the currently executing thread    

System.out.println("Currently Executing The Thread : " + Thread.currentThread().getName()

);   

   

System.out.println("Priority of the main thread is : " + Thread.currentThread().getPriority());   

   

// Priority of the main thread is 10 now   



Department of CSE                                                                                                              Page 33 of 44 
 

Thread.currentThread().setPriority(10);   

   

System.out.println("Priority of the main thread is : " + Thread.currentThread().getPriority());   

}   

}   

Output: 

Priority of the thread th1 is : 5 

Priority of the thread th2 is : 5 

Priority of the thread th2 is : 5 

Priority of the thread th1 is : 6 

Priority of the thread th2 is : 3 

Priority of the thread th3 is : 9 

Currently Executing The Thread : main 

Priority of the main thread is : 5 

Priority of the main thread is : 10 

We know that a thread with high priority will get preference over lower priority threads when 

it comes to the execution of threads. However, there can be other scenarios where two threads 

can have the same priority. All of the processing, in order to look after the threads, is done by 

the Java thread scheduler. Refer to the following example to comprehend what will happen if 

two threads have the same priority. 

FileName: ThreadPriorityExample1.java 

// importing the java.lang package   

import java.lang.*;   

   

public class ThreadPriorityExample1 extends Thread    

{   

   

// Method 1   

// Whenever the start() method is called by a thread   

// the run() method is invoked   

public void run()   

{   

// the print statement   

System.out.println("Inside the run() method");   

}   

   

   

// the main method   

public static void main(String argvs[])   

{   

   

// Now, priority of the main thread is set to 7   



Department of CSE                                                                                                              Page 34 of 44 
 

Thread.currentThread().setPriority(7);   

   

// the current thread is retrieved   

// using the currentThread() method   

   

// displaying the main thread priority   

// using the getPriority() method of the Thread class   

System.out.println("Priority of the main thread is : " + Thread.currentThread().getPriority());   

   

// creating a thread by creating an object of the class ThreadPriorityExample1   

ThreadPriorityExample1 th1 = new ThreadPriorityExample1();   

   

// th1 thread is the child of the main thread   

// therefore, the th1 thread also gets the priority 7   

   

// Displaying the priority of the current thread   

System.out.println("Priority of the thread th1 is : " + th1.getPriority());   

}   

}   

Output: 

Priority of the main thread is : 7 

Priority of the thread th1 is : 7 

Explanation: If there are two threads that have the same priority, then one can not predict 

which thread will get the chance to execute first. The execution then is dependent on the 

thread scheduler's algorithm (First Come First Serve, Round-Robin, etc.) 

Example of IllegalArgumentException 

We know that if the value of the parameter newPriority of the method getPriority() goes out 

of the range (1 to 10), then we get the IllegalArgumentException. Let's observe the same with 

the help of an example. 

FileName: IllegalArgumentException.java 

// importing the java.lang package   

import java.lang.*;   

   

public class IllegalArgumentException extends Thread    

{   

   

// the main method   

public static void main(String argvs[])   

{   



Department of CSE                                                                                                              Page 35 of 44 
 

   

// Now, priority of the main thread is set to 17, which is greater than 10   

Thread.currentThread().setPriority(17);   

   

// The current thread is retrieved   

// using the currentThread() method   

   

// displaying the main thread priority   

// using the getPriority() method of the Thread class   

System.out.println("Priority of the main thread is : " + Thread.currentThread().getPriority());   

   

}   

}   

When we execute the above program, we get the following exception: 

Exception in thread "main" java.lang.IllegalArgumentException 

 at java.base/java.lang.Thread.setPriority(Thread.java:1141) 

 at IllegalArgumentException.main(IllegalArgumentException.java:12) 

 

 

Synchronization in Java 
 
 

Multi-threaded programs may often come to a situation where multiple threads try to access 

the same resources and finally produce erroneous and unforeseen results.  

So it needs to be made sure by some synchronization method that only one thread can 

access the resource at a given point in time. Java provides a way of creating threads and 

synchronizing their tasks using synchronized blocks. Synchronized blocks in Java are 

marked with the synchronized keyword. A synchronized block in Java is synchronized on 

some object. All synchronized blocks synchronize on the same object can only have one 

thread executing inside them at a time. All other threads attempting to enter the 

synchronized block are blocked until the thread inside the synchronized block exits the 

block. 

Following is the general form of a synchronized block:  

// Only one thread can execute at a time.  

// sync_object is a reference to an object 

// whose lock associates with the monitor.  

// The code is said to be synchronized on 

// the monitor object 

synchronized(sync_object) 

{ 

   // Access shared variables and other 

   // shared resources 

} 

https://www.geeksforgeeks.org/multithreading-in-java/
https://www.geeksforgeeks.org/monitors-in-process-synchronization/


Department of CSE                                                                                                              Page 36 of 44 
 

This synchronization is implemented in Java with a concept called monitors. Only one 

thread can own a monitor at a given time. When a thread acquires a lock, it is said to have 

entered the monitor. All other threads attempting to enter the locked monitor will be 

suspended until the first thread exits the monitor. 

Following is an example of multi-threading with synchronized. 

 Java 

// A Java program to demonstrate working of 

// synchronized. 

  

import java.io.*; 

import java.util.*; 

  

// A Class used to send a message 

class Sender 

{ 

    public void send(String msg) 

    { 

        System.out.println("Sending\t"  + msg ); 

        try 

        { 

            Thread.sleep(1000); 

        } 

        catch (Exception e) 

        { 

            System.out.println("Thread  interrupted."); 



Department of CSE                                                                                                              Page 37 of 44 
 

        } 

        System.out.println("\n" + msg + "Sent"); 

    } 

} 

  

// Class for send a message using Threads 

class ThreadedSend extends Thread 

{ 

    private String msg; 

    Sender  sender; 

  

    // Receives a message object and a string 

    // message to be sent 

    ThreadedSend(String m,  Sender obj) 

    { 

        msg = m; 

        sender = obj; 

    } 

  

    public void run() 

    { 

        // Only one thread can send a message 

        // at a time. 



Department of CSE                                                                                                              Page 38 of 44 
 

        synchronized(sender) 

        { 

            // synchronizing the send object 

            sender.send(msg); 

        } 

    } 

} 

  

// Driver class 

class SyncDemo 

{ 

    public static void main(String args[]) 

    { 

        Sender send = new Sender(); 

        ThreadedSend S1 = 

            new ThreadedSend( " Hi " , send ); 

        ThreadedSend S2 = 

            new ThreadedSend( " Bye " , send ); 

  

        // Start two threads of ThreadedSend type 

        S1.start(); 

        S2.start(); 

  



Department of CSE                                                                                                              Page 39 of 44 
 

        // wait for threads to end 

        try 

        { 

            S1.join(); 

            S2.join(); 

        } 

        catch(Exception e) 

        { 

            System.out.println("Interrupted"); 

        } 

    } 

} 

  

  

Output 

Sending     Hi  

 

 Hi Sent 

Sending     Bye  

 

 Bye Sent 

  

The output is the same every time we run the program. 

  

In the above example, we choose to synchronize the Sender object inside the run() method of 
the ThreadedSend class. Alternately, we could define the whole send() block as 
synchronized, producing the same result. Then we don’t have to synchronize the Message 
object inside the run() method in ThreadedSend class.  
  

// An alternate implementation to demonstrate 

// that we can use synchronized with method also. 



Department of CSE                                                                                                              Page 40 of 44 
 

 

class Sender { 

   public synchronized void send(String msg) 

   { 

       System.out.println("Sending\t" + msg); 

       try { 

           Thread.sleep(1000); 

       } 

       catch (Exception e) { 

           System.out.println("Thread interrupted."); 

       } 

       System.out.println("\n" + msg + "Sent"); 

   } 

} 

We do not always have to synchronize a whole method. Sometimes it is preferable 
to synchronize only part of a method. Java synchronized blocks inside methods make this 
possible. 
  

// One more alternate implementation to demonstrate 

// that synchronized can be used with only a part of   

// method 

 

class Sender   

{ 

   public void send(String msg) 

   { 

       synchronized(this) 

       { 

           System.out.println("Sending\t" + msg ); 

           try   

           { 

               Thread.sleep(1000); 

           }   

           catch (Exception e)   

           { 

               System.out.println("Thread interrupted."); 



Department of CSE                                                                                                              Page 41 of 44 
 

           } 

           System.out.println("\n" + msg + "Sent"); 

       } 

   } 

} 

 

 

 

Inter-thread Communication in Java 

Inter-thread communication or Co-operation is all about allowing synchronized threads to 

communicate with each other. 

Cooperation (Inter-thread communication) is a mechanism in which a thread is paused 

running in its critical section and another thread is allowed to enter (or lock) in the same 

critical section to be executed.It is implemented by following methods of Object class: 

o wait() 

o notify() 

o notifyAll() 

1) wait() method 

The wait() method causes current thread to release the lock and wait until either another 

thread invokes the notify() method or the notifyAll() method for this object, or a specified 

amount of time has elapsed. 

The current thread must own this object's monitor, so it must be called from the synchronized 

method only otherwise it will throw exception. 

47.4M 

766 

Hello Java Program for Beginners 

Method Description 

public final void wait()throws InterruptedException It waits until object is notified. 

public final void wait(long timeout)throws 

InterruptedException 

It waits for the specified amount 

of time. 

2) notify() method 

The notify() method wakes up a single thread that is waiting on this object's monitor. If any 

threads are waiting on this object, one of them is chosen to be awakened. The choice is 

arbitrary and occurs at the discretion of the implementation. 



Department of CSE                                                                                                              Page 42 of 44 
 

Syntax: 

public final void notify()   

3) notifyAll() method 

Wakes up all threads that are waiting on this object's monitor. 

Syntax: 

public final void notifyAll()   

Understanding the process of inter-thread communication 

 

The point to point explanation of the above diagram is as follows: 

1. Threads enter to acquire lock. 

2. Lock is acquired by on thread. 

3. Now thread goes to waiting state if you call wait() method on the object. Otherwise it 

releases the lock and exits. 

4. If you call notify() or notifyAll() method, thread moves to the notified state (runnable 

state). 

5. Now thread is available to acquire lock. 

6. After completion of the task, thread releases the lock and exits the monitor state of the 

object. 

Why wait(), notify() and notifyAll() methods are defined in Object class not Thread 

class? 

It is because they are related to lock and object has a lock. 

Difference between wait and sleep? 

Let's see the important differences between wait and sleep methods. 



Department of CSE                                                                                                              Page 43 of 44 
 

wait() sleep() 

The wait() method releases the lock. The sleep() method doesn't release the 

lock. 

It is a method of Object class It is a method of Thread class 

It is the non-static method It is the static method 

It should be notified by notify() or 

notifyAll() methods 

After the specified amount of time, sleep 

is completed. 

Example of Inter Thread Communication in Java 

Let's see the simple example of inter thread communication. 

Test.java 

class Customer{     

int amount=10000;     

     

synchronized void withdraw(int amount){     

System.out.println("going to withdraw...");     

     

if(this.amount<amount){     

System.out.println("Less balance; waiting for deposit...");     

try{wait();}catch(Exception e){}     

}     

this.amount-=amount;     

System.out.println("withdraw completed...");     

}     

     

synchronized void deposit(int amount){     

System.out.println("going to deposit...");     

this.amount+=amount;     

System.out.println("deposit completed... ");     

notify();     

}     

}     

     

class Test{     

public static void main(String args[]){     

final Customer c=new Customer();     

new Thread(){     

public void run(){c.withdraw(15000);}     

}.start();     

new Thread(){     



Department of CSE                                                                                                              Page 44 of 44 
 

public void run(){c.deposit(10000);}     

}.start();     

     

}}     

Output: 
going to withdraw... 

Less balance; waiting for deposit... 

going to deposit... 

deposit completed... 

withdraw completed 

 


	What is exception
	Exception Handling Fundamentals :

	Advantage of Exception Handling
	Types of Exception
	Termination Model :
	Resumptive Model :
	Uncaught Exceptions in Java :
	Java Catch Multiple Exceptions
	Java Multi-catch block
	Points to remember
	Flowchart of Multi-catch Block :
	Example 1


	Java Nested try block :
	Why use nested try block :
	Syntax:
	Java Nested try Example
	Example 1
	Example 2


	Java finally block
	Flowchart of finally block
	Note: If you don't handle the exception, before terminating the program, JVM executes finally block (if any).

	Why use Java finally block?
	Usage of Java finally
	Case 1: When an exception does not occur
	Case 2: When an exception occurr but not handled by the catch block
	Case 3: When an exception occurs and is handled by the catch block


	Built-in Exceptions in Java with examples
	Creating Own Exceptions in Java :
	Process-Based and Thread-Based Multitasking
	Java Thread Model :
	New
	Runnable / Ready
	Running
	Blocked / Waiting
	Dead / Terminated

	Java Program to Create a Thread :
	Priority of a Thread (Thread Priority)
	Setter & Getter Method of Thread Priority
	3 constants defined in Thread class:
	Example of priority of a Thread:
	Example of IllegalArgumentException


	Synchronization in Java
	Inter-thread Communication in Java
	1) wait() method
	2) notify() method
	3) notifyAll() method
	Understanding the process of inter-thread communication
	Why wait(), notify() and notifyAll() methods are defined in Object class not Thread class?
	Difference between wait and sleep?
	Example of Inter Thread Communication in Java



